您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 述职报告 > 2019年四川省绵阳市涪城区中考数学二诊试卷解析版
2019年四川省绵阳市涪城区中考数学二诊试卷一、选择题:本大题共12个小题每小题3分,共36分,每个小题只有一个选项最符合题目要求.1.﹣5的倒数是()A.B.﹣C.﹣5D.52.下面由正三角形和正方形拼成的图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.3.近几年绵阳交通快速发展现根据规划又将建设成绵复线高速,新建复线全长约127公里,总投资约331亿元,若将“331亿”用科学记数法表示应为()A.33.1x109B.3.31×1011C.3.31×1010D.0.331×10114.下列几何体中,主视图相同的是()A.①②B.①③C.①④D.②④5.一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点F在CB的延长线上.若DE∥CF,则∠BDF等于()A.35°B.30°C.25°D.15°6.若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是()A.m>9B.m≥9C.m<﹣9D.m≤﹣97.如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是()A.3mB.mC.mD.4m8.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为()A.=B.=C.=D.=9.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.cmB.3cmC.4cmD.4cm10.如图,正方形ABCD.AB=4,点E为BC边上点,连接AE延长至点F连接BF,若tan∠FAB=tan∠EBF=,则AF的长度是()A.B.C.D.11.如图,▱ABCD中,AB=3,AD=5,AC⊥AB,E、F为线段BD上两动点(不与端点重合)且EF=BD连接AE,CF,当点EF运动时,对AE+CF的描述正确的是()A.等于定值5﹣B.有最大值C.有最小值D.有最小值12.如图,由小矩形组成的系列图形中第一个有1个矩形,第2个图形包含3个矩形,第三个包含6个矩形,按此规律则第99个图形包含()个矩形.A.4950B.4960C.5061D.5120二、填空题:本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上.13.因式分解:a3b﹣ab=.14.如图在平面直角坐标系xOy中,△OAB是等腰直角三角形,∠OBA=90°,A(6,0),点B位于第一象限,则点B关于原点的对称点B′的坐标是.15.使代数式+有意义,则x的取值范围是.16.在一个不透明的袋子里装有5个完全相同的乒乓球,把它们标号分别记为1,2,3,4,5,从中随机摸出两个小球,标号均为单数的概率为.17.如图,半径为13的等圆⊙O1和⊙O2相交与A,B两点,延长O1O2与⊙O1交于点D,连接BD并延长与⊙O2交于点C,若AB=24,则CD=.18.如图,△ABC中,∠A=90°,∠ABD=∠ACB,AD=AC,sin∠ABD=.三、解答题:本大题共7个小题,共86分.解答应写出文字说明证明过程或演算步骤19.(16分)(1)计算:(2)先化简,再求值:,其中x=220.(11分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?21.(11分)某工厂生产甲、乙两种产品,已知生产1吨产品甲需要2吨原材料A;生产1吨产品乙需要3吨原材料A.根据市场调研,产品甲、乙所获利润y(万元)与其产量x(吨)之间分别满足函数关系:产品甲:y=ax2+bx且x=2时,y=2.6;x=3时,y=3.6产品乙:y=0.3x(1)求产品甲所获利润y(万元)与其产量x(吨)之间满足的函数关系;(2)若现原材料A共有20吨,请设计方案,应怎样分配给甲、乙两种产品组织生产,才能使得最终两种产品的所获利润最大.22.(11分)如图在平面直角坐标系xOy中,一次函数y=2x﹣2的图象与函数y=(k≠0)的图象有交点为A(m,2),与y轴交于点B(1)求反比例函数的解析式;(2)若函数y=在第一象限的图象上有一点P,且△POB的面积为6,求点P坐标.23.(11分)如图,BC为⊙O的直径,A,D是⊙O上两点,弧AC=弧AD,AB与CD交于点M,延长BD至点E,且与CA的廷长线交于点E.(1)求证:BE=BC;(2)若tan∠BCA=,AC=3,求DM的长度.24.(12分)已知抛物线y=ax2﹣4x+3(a≠0)与x轴交于点A(1,0),B两点,与y轴交于点C.(1)求抛物线解析式;(2)若点P为抛物线上点,当PB=PC时,求点P坐标;(3)若点M为线段BC上点(不含端点),且△MAB与△ABC相似,求点M坐标.25.(14分)如图,在平面直角坐标系xOy中,△PEF是边长为5的正三角形,P、E在x轴上,点F位于x轴上方,其中P(a,0)(﹣5≤a<5).四边形OABC是边长为5的正方形,A、C均在坐标轴上,且B(5,5),M为AB边上点,且AM=OE,N为点M关于直线OB对称的点.(1)求证:OP=AE;(2)如图1,当△PEF沿x轴运动使得N、F、E三点在同一条直线上时,求此时△MNE与正方形OABC重叠部分的面积;(3)当△PEF从最左边沿x轴向右运动,到达(2)所在位置时停止,在这一过程中用y表示四边形MNFE面积,求y与a的函数关系式.2019年四川省绵阳市涪城区中考数学二诊试卷参考答案与试题解析一、选择题:本大题共12个小题每小题3分,共36分,每个小题只有一个选项最符合题目要求.1.【分析】根据倒数的定义进行解答即可.【解答】解:∵(﹣5)×(﹣)=1,∴﹣5的倒数是﹣.故选:B.【点评】本题考查的是倒数,熟知乘积是1的两数互为倒数是解答此题的关键.2.【分析】根据轴对称图形的概念与中心对称的概念即可作答.【解答】解:A、B、D都是中心对称也是轴对称图形,C、是轴对称,但不是中心对称.故选:C.【点评】此题由复合图形组成,掌握好中心对称图形与轴对称图形的概念是解题的关键.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将“331亿”用科学记数法表示应为3.31×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】主视图是从物体正面看,所得到的图形.【解答】解:圆柱的主视图是长方形,圆锥的主视图是三角形,长方体的主视图是长方形,球的主视图是圆,故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.【分析】直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.【解答】解:由题意可得:∠EDF=30°,∠ABC=45°,∵DE∥CB,∴∠BDE=∠ABC=45°,∴∠BDF=45°﹣30°=15°.故选:D.【点评】此题主要考查了平行线的性质,根据平行线的性质得出∠BDE的度数是解题关键.6.【分析】利用根的判别式△<0列不等式求解即可.【解答】解:∵抛物线y=x2﹣6x+m与x轴没有交点,∴△=b2﹣4ac<0,∴(﹣6)2﹣4×1•m<0,解得m>9,∴m的取值范围是m>9.故选:A.【点评】本题考查了抛物线与x轴的交点问题,利用根的判别式列出不等式是解题的关键.7.【分析】因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.【解答】解:∵sin∠CAB==,∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°==,解得:B′C′=3.故选:B.【点评】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.8.【分析】根据甲乙的工作时间,可列方程.【解答】解:设甲每小时做x个,乙每小时做(x+6)个,根据甲做30个所用时间与乙做45个所用时间相等,得,故选:A.【点评】本题考查了分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.9.【分析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.【解答】解:L==4π(cm);圆锥的底面半径为4π÷2π=2(cm),∴这个圆锥形筒的高为=4(cm).故选:C.【点评】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.10.【分析】由三角函数得出BE=,由勾股定理求出AE==,证出△BEF∽△FBA,得出===,设EF=x,则BF=3x,AF=9x,由AF=AE+EF得出方程,解方程得出EF的长,即可得出AF的长.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵tan∠FAB==tan∠EBF=,AB=4,∴BE=,∠FAB=∠EBF,∴AE==,又∵∠F=∠F,∴△BEF∽△FBA,∴===,设EF=x,则BF=3x,AF=9x,∵AF=AE+EF,∴9x=+x,解得:x=,∴AF=AE+EF=+=;故选:D.【点评】本题考查了正方形的性质、勾股定理、三角函数、相似三角形的判定与性质等知识;熟练掌握正方形的性质,证明三角形相似是解题的关键.11.【分析】由平行四边形的性质得出OB=OD,OA=OC,得出OB=EF=OD,BE=OF,OE=DF,由勾股定理求出AC==4,OB==,当BE=O时,AE+CF的值最小,E为OB的中点,由直角三角形的性质得出AE=OB,同理:CF=OD,即可得出结果【解答】解:∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,∵EF=BD,∴OB=EF=OD,∴BE=OF,OE=DF,∵AB=3,AD=5,AC⊥AB,∴AC==4,∴OA=2,∴OB==,当BE=OE时,AE+CF的值最小,E为OB的中点,∴AE=OB,同理:CF=OD,∴AE+CF=OB=,即AE+CF的最小值为;故选:D.【点评】本题考查了平行四边形的性质、直角三角形的性质、勾股定理等知识;熟练掌握平行四边形的性质和勾股定理是解题的关键.12.【分析】由于图1矩形有1个,图2矩形有2+1=3个,图3矩形有3+2+1=6个,由此即可得到第99个图形中矩形的个数.【解答】解:由分析可知第99个包含99+98+97+…+3+2+1=4950个,故选:A.【点评】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.二、填空题:本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上.13.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用平方差公式继续分解.【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1).故答案为:ab(a+1)(a﹣1).【点评】本题考查了
本文标题:2019年四川省绵阳市涪城区中考数学二诊试卷解析版
链接地址:https://www.777doc.com/doc-7350789 .html