您好,欢迎访问三七文档
1第3讲合情推理与演绎推理基础知识整合1.合情推理2.演绎推理(1)定义:从□10一般性的原理出发,推出□11某个特殊情况下的结论,我们把这种推理称为演绎推理.(2)特点:演绎推理是由□12一般到特殊的推理.(3)模式:“三段论”是演绎推理的一般模式.21.合情推理的结论是猜想,不一定正确;演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.2.合情推理是发现结论的推理;演绎推理是证明结论的推理.1.(2017·上海模拟)某西方国家流传这样一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅.”结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误答案C解析∵大前提的形式:“鹅吃白菜”不是全称命题,大前提本身正确;小前提“参议员先生也吃白菜”本身也正确,但是不是大前提下的特殊情况,鹅与人不能类比.∴不符合三段论的推理形式,∴推理形式错误.2.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是()A.10日和12日B.2日和7日C.4日和5日D.6日和11日答案D解析这12天的日期之和,S12=122(1+12)=78,甲、乙、丙各自的值班日期之和是26,对于甲,剩余2天的值班日期之和是22,因此这两天是10日和12日,故甲在1日,3日,10日,12日值班;对于乙,剩余2天的值班日期之和是9,故乙可能在2日,7日,或3者是4日,5日值班,因此丙必定值班的日期是6日和11日.故选D.3.(2017·全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩答案D解析由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀、1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.故选D.4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.答案1∶8解析因为两个正三角形是相似的三角形,所以它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方.所以它们的体积比为1∶8.5.(2019·银川模拟)下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第n个图形中小正方形的个数是________.答案nn+12解析由图知第1个图形的小正方形的个数为1,第2个图形的小正方形的个数为1+2,第3个图形的小正方形的个数为1+2+3,第4个图形的小正方形的个数为1+2+3+4,…,则第n个图形的小正方形的个数为1+2+3+…+n=nn+12.6.已知2+23=223,3+38=338,4+415=4415,…,若6+at=6at(a,t均为正实数),类比以上等式,可推测a,t的值,则a+t=________.答案41解析根据题中所列的前几项的规律可知其通项应为n+nn2-1=nnn2-1,所以当n=6时a=6,t=35,a+t=41.核心考向突破4考向一归纳推理角度1×18-1=79.
本文标题:2020版高考数学一轮复习 第十二章 算法初步 第3讲 合情推理与演绎推理教案 理(含解析)新人教A
链接地址:https://www.777doc.com/doc-8463105 .html