您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 三角函数的正六边形记忆法(初高中均适用)
三角函数与正六边形制作人:EncyclopediaⅠ•回顾三角函数的定义Ⅱ•正六边形记忆法Ⅲ•小试牛刀Ⅳ•总结——三角函数赋讲述思路三角函数定义BACsin𝛼=对边斜边=ABAC𝛼cos𝛼=邻边斜边=BCACtan𝛼=对边邻边=ABBCcsc𝛼=斜边对边=ACABcot𝛼=邻边对边=BCABsec𝛼=斜边邻边=ACBC余弦(cosine)正弦(sine)正切(tangent)余切(cotangent)正割(secant)余割(cosecant)如何巧妙记住同角异名三角函数关系呢?正六边形法sin𝛼cos𝛼tan𝛼cot𝛼csc𝛼sec𝛼1sin2𝛼+cos2𝛼=1tan2𝛼+1=sec2𝛼1+cot2𝛼=csc2𝛼sin𝛼cos𝛼tan𝛼cot𝛼csc𝛼sec𝛼1sin𝛼·csc𝛼=1cos𝛼·sec𝛼=1tan𝛼·cot𝛼=1sin𝛼cos𝛼tan𝛼cot𝛼csc𝛼sec𝛼sin𝛼·cot𝛼=cos𝛼cot𝛼·sec𝛼=csc𝛼sec𝛼·sin𝛼=tan𝛼sin𝛼cos𝛼tan𝛼cot𝛼csc𝛼sec𝛼tan𝛼·cos𝛼=sin𝛼cos𝛼·csc𝛼=cot𝛼csc𝛼·tan𝛼=sec𝛼sin𝛼cos𝛼tan𝛼cot𝛼csc𝛼sec𝛼sin𝛼·cot𝛼·sec𝛼=11sin𝛼cos𝛼tan𝛼cot𝛼csc𝛼sec𝛼cos𝛼·csc𝛼·tan𝛼=11小试牛刀sin21°+sin22°+sin23°+⋯+sin287°+sin288°+sin289°=?cos21°cos23°cos22°答案:44.5sin2𝛼+cos2𝛼=1小试牛刀tan1°×tan2°×tan3°×⋯×tan87°×tan88°×tan89°=?cot1°cot3°cot2°tan𝛼·cot𝛼=1答案:1三角函数赋三角函数莫惊慌,正六边形来帮忙。上弦中切下边割,倒三角形平方和。中心对角元素积,互为倒数结果一。再说非中心对角,元素乘积顶点撂。间隔顶点连三角,三元相乘中心跑。自此三角函数毕,记清关系没问题。感谢聆听【【
本文标题:三角函数的正六边形记忆法(初高中均适用)
链接地址:https://www.777doc.com/doc-1795423 .html