您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 北师大版七年级数学下册知识点总结
第一章整式运算知识点(一)概念应用1、单项式和多项式统称为整式。单项式有三种:单独的字母(a,-w等);单独的数字(125,73,3.25,-14562等);数字与字母乘积的一般形式(-2s,a32,x5等)。2、单项式的系数是指数字部分,如abc23的系数是23(注意系数部分应包含,因为是常数);单项式的次数是它所有字母的指数和(记住不包括数字和的指数),如53256yx次数是8。3、多项式:几个单项式的和叫做多项式。4、多项式的特殊形式:2ba等。5、一个多项式次数最高的项的次数叫做这个多项式的次数。如12312yyx是3次3项式。6、单独的一个非零数的次数是0。知识点(二)公式应用1、nmnmaaa(m,n都是正整数)如523bbb。拓展运用nmnmaaa如已知ma=2,na=8,求nma。解:nmnmaaa=2×8=16.2、mnnmaa)((m,n都是正整数)如12436243622)()(2aaaaa拓展应用mnnmmnaaa)()(。若2na,则42)(222nnaa。3、nnnbaab)((n是正整数)拓展运用nnnabba)(。4、nmnmaaa(a不为0,m,n都为正整数,且m大于n)。拓展应用nmnmaaa如若9ma,3na,则339nmnmaaa。5、)0(10aa;0(1aaapp,是正整数)。如81)2(1)2(336、平方差公式22))((bababaa为相同项,b为相反项。如22224)2()2)(2(nmnmnmnm7、完全平方公式2222)(bababa2222)(bababa逆用:2222222(),2().aabbabaabbab如22244)2(yxyxyx8、应用式:abbaba2)(222abbaba2)(222abbaba4)()(22abbaba4)()(22两位数10a+b三位数100a+10b+c。9、单项式与多项式相乘:m(a+b+c)=ma+mb+mc。10、、多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb。11、多项式除以单项式的法则:().abcmambmcm12、常用变形:221((nnxyxy2n2n+1)=(y-x),)=-(y-x)知识点(三)运算:1、常见误区:1、5635)53(2)3(52222xxxx(10615522xx);2、22aa(a);3、632aaa(5a);4、4442bbb(8b);5、1055xxx(52x);6、44aa(41a);7、2226)3(qppq(229qp);8、236aaa(3a);9、055aa(1),0)14.3(0(1);10、222)2)(2(bababa(224(ba);11、64)8)(8(2ababab(6422ba);12、2222516)54(yxyx(22254016yxyx)。2、简便运算:①公式类2525125)2504.0(252504.02504.020052005200520052006200511)8125.0(8125.0)2(125.02125.01001001001001003100300100②平方差公式11123123)1123)(1123(1231221241232222③完全平方公式998001120001000000)11000(99922第二章平行线与相交线知识点(一)理论1、若∠1+∠2=90,则∠1与∠2互余。若∠3+∠4=180,则∠3与∠4互补。2、同角的余角相等若∠1+∠2=90,∠2+∠4=90.则∠1=∠4等角的余角相等若∠1+∠2=90,∠3+∠4=90.∠1=∠3则∠2=∠4同角的补角相等若∠1+∠2=180,∠2+∠4=180.则∠1=∠4等角的补角相等若∠1+∠2=180,∠3+∠4=180.∠1=∠3则∠2=∠43、对顶角(1)、两条直线相交成四个角,其中不相邻的两个角是对顶角。(2)、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。(3)、对顶角的性质:对顶角相等。4、同位角、内错角、同旁内角(1)、两条直线被第三条直线所截,形成了8个角。形成4对同位角,2对内错角,2对同旁内角(2)、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。(3)、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。(4)、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。5、平行线的判定方法(1)、同位角相等,两直线平行。(2)、内错角相等,两直线平行。(3)、同旁内角互补,两直线平行。(4)、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。(简称为:平行于同一直线的两直线平行)(5)、在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线平行(简称为:垂直于同一直线的两直线平行)6、尺规作线段和角(1)、在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。(2)、尺规作图是最基本、最常见的作图方法,通常叫基本作图。知识点(二)1、方位问题①若从A点看B是北偏东20,则从B看A是南偏西20.(南北相对;东西相对,数值不变);②从甲地到乙地,经过两次拐弯若方向不变,则两次拐向相反,角相等;若方向相反,则两次拐向相同,角互补。2、光反射问题如图若光线AO沿OB被镜面反射则∠AOC=∠BOD∠AON=∠BON.第四章概率知识点一、事件:1、事件分为必然事件、不可能事件、不确定事件。2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。二、等可能性:是指几种事件发生的可能性相等。1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。2、必然事件发生的概率为1,记作P(必然事件)=1;3、不可能事件发生的概率为0,记作P(不可能事件)=0;4、不确定事件发生的概率在0—1之间,记作0P(不确定事件)1。5、概率的计算:(1)直接数数法:即直接数出所有可能出现的结果的总数n,再数出事件A可能出现的结果数m,利用概率公式()mnPA直接得出事件A的概率。(2)对于较复杂的题目,我们可采用“列表法”或画“树状图法”。四、几何概率1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所ABNCD有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。2、求几何概率:(1)首先分析事件所占的面积与总面积的关系;(2)然后计算出各部分的面积;(3)最后代入公式求出几何概率。第五章三角形知识点一理论整理。1、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。2、判断三条线段能否组成三角形。①a+bc(ab为最短的两条线段)②a-bc(ab为最长的两条线段)3、第三边取值范围:a-bca+b如两边分别是5和8则第三边取值范围为3x13.4、对应周长取值范围若两边分别为a,b则周长的取值范围是2aL2(a+b)a为较长边。如两边分别为5和7则周长的取值范围是14L24.5、三角形中三角的关系(1)、三角形内角和定理:三角形的三个内角的和等于1800。n边行内角和公式(n-2)0108(2)、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。注:直角三角形的性质:直角三角形的两个锐角互余。(3)钝角三角形,即有一个内角是钝角的三角形。(3)、判定一个三角形的形状主要看三角形中最大角的度数。(4)、直角三角形的面积等于两直角边乘积的一半。6、三角形的三条重要线段(1)、三角形的角平分线:1、三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。2、任意三角形都有三条角平分线,并且它们相交于三角形内一点。(内心)(2)、三角形的中线:1、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。2、三角形有三条中线,它们相交于三角形内一点。(重心)3、三角形的中线把这个三角形分成面积相等的两个三角形(3)、三角形的高线:(1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。(2)任意三角形都有三条高线,它们所在的直线相交于一点。(垂心)(3)注意等底等高知识的考试7、相关命题:1、三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。2、锐角三角形中最大的锐角的取值范围是60≤X90。最大锐角不小于60度。3、任意一个三角形两角平分线的夹角=90+第三角的一半。4、钝角三角形有两条高在外部。5、全等图形的大小(面积、周长)、形状都相同。6、面积相等的两个三角形不一定是全等图形。7、能够完全重合的两个图形是全等图形。8、三角形具有稳定性。9、三条边分别对应相等的两个三角形全等。10、三个角对应相等的两个三角形不一定全等。11、两个等边三角形不一定全等。12、两角及一边对应相等的两个三角形全等。13、两边及一角对应相等的两个三角形不一定全等。14、两边及它们的夹角对应相等的两个三角形全等。15、两条直角边对应相等的两个直角三角形全等。16、一条斜边和一直角边对应相等的两个三角形全等。17、一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。18、一角和一边对应相等的两个直角三角形不一定全等。19、有一个角是60的等腰三角形是等边三角形。8、全等图形1、两个能够重合的图形称为全等图形。2、全等图形的性质:全等图形的形状和大小都相同。9、全等三角形1、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。2、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。10、全等三角形的判定1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。11、做三角形(3种做法:已知两边及夹角、已知两角及夹边、已知三边、已知两角及一边可以转化为已知已知两角及夹边)。12、利用三角形全等测距离;13、、直角三角形全等的条件:在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。第六章变量之间的关系一理论理解1、若Y随X的变化而变化,则X是自变量Y是因变量。自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。自变量因变量联系1、两者都是某一过程中的变量;2、两者因研究的侧重点或先后顺序不同可以互相转化。区别先发生变化或自主发生变化的量后发生变化或随自变量变化而变化的量2、
本文标题:北师大版七年级数学下册知识点总结
链接地址:https://www.777doc.com/doc-2636510 .html