您好,欢迎访问三七文档
2004年高考试题全国卷1理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)本试卷分第I卷(选择题)和第II卷(非选择题)两部分.共150分.考试时间120分钟.第I卷(选择题共60分)参考公式:如果事件A、B互斥,那么P(A+B)=P(A)+P(B)如果事件A、B相互独立,那么P(A·B)=P(A)·P(B)如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率Pn(k)=CknPk(1-P)n-k一、选择题:本大题共12小题,每小题6分,共60奎屯王新敞新疆1.(1-i)2·i=()A.2-2iB.2+2iC.-2D.22.已知函数)(.)(.11lg)(afbafxxxf则若()A.bB.-bC.b1D.-b13.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|=()A.7B.10C.13D.44.函数)1(11xxy的反函数是()A.y=x2-2x+2(x1)B.y=x2-2x+2(x≥1)C.y=x2-2x(x1)D.y=x2-2x(x≥1)5.73)12(xx的展开式中常数项是()球的表面积公式S=42R其中R表示球的半径,球的体积公式V=334R,其中R表示球的半径A.14B.-14C.42D.-426.设A、B、I均为非空集合,且满足ABI,则下列各式中错误..的是()A.(ICA)∪B=IB.(ICA)∪(ICB)=IC.A∩(ICB)=D.(ICA)(ICB)=ICB7.椭圆1422yx的两个焦点为F1、F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则||2PF=()A.23B.3C.27D.48.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是()A.[-21,21]B.[-2,2]C.[-1,1]D.[-4,4]9.为了得到函数)62sin(xy的图象,可以将函数xy2cos的图象()A.向右平移6个单位长度B.向右平移3个单位长度C.向左平移6个单位长度D.向左平移3个单位长度10.已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H.设四面体EFGH的表面积为T,则ST等于()A.91B.94C.41D.3111.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为()A.12513B.12516C.12518D.1251912.cabcabaccbba则,2,2,1222222的最小值为()A.3-21B.21-3C.-21-3D.21+3第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.不等式|x+2|≥|x|的解集是.14.由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,∠APB=60°,则动点P的轨迹方程为.15.已知数列{an},满足a1=1,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项1___na12nn16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是.①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)求函数xxxxxxf2sin2cossincossin)(2244的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,Ra求函数axexxf2)(的单调区间.20.(本小题满分12分)如图,已知四棱锥P—ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,(II)求面APB与面CPB所成二面角的大小.21.(本小题满分12分)设双曲线C:1:)0(1222yxlayax与直线相交于两个不同的点A、B.(I)求双曲线C的离心率e的取值范围:(II)设直线l与y轴的交点为P,且.125PBPA求a的值.22.(本小题满分14分)已知数列1}{1aan中,且a2k=a2k-1+(-1)K,a2k+1=a2k+3k,其中k=1,2,3,…….(I)求a3,a5;(II)求{an}的通项公式.2004年高考试题全国卷1理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.{x|x≥-1}14.x2+y2=415.2!n16.①②④三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xxxxxxxfcossin22cossin)cos(sin)(22222212sin41)cossin1(21)cossin1(2cossin122xxxxxxx所以函数f(x)的最小正周期是π,最大值是43,最小值是41.18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C×0.52×0.62+12C×0.52×0.4×0.6=0.3P(ξ=2)=22C×0.52×0.62+12C12C×0.52×0.4×0.6+22C×0.52×0.42=0.37.P(ξ=3)=22C12C×0.52×0.4×0.6+12C22C×0.52×0.42=0.2P(ξ=4)=0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:ξ01234P0.090.30.370.20.04所以Eξ=0×0.09+1×0.3+2×0.37+3×0.2+4×0.04=1.8.19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f(x)的导数:.)2(2)(22axaxaxeaxxeaxxexf(I)当a=0时,若x0,则)(xf0,若x0,则)(xf0.所以当a=0时,函数f(x)在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数.(II)当,02,02,02xaxaxxa或解得由时由.02,022xaaxx解得所以,当a0时,函数f(x)在区间(-∞,-a2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III)当a0时,由2x+ax20,解得0x-a2,由2x+ax20,解得x0或x-a2.所以当a0时,函数f(x)在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数.20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I)解:如图,作PO⊥平面ABCD,垂足为点O.连结OB、OA、OD、OB与AD交于点E,连结PE.∵AD⊥PB,∴AD⊥OB,∵PA=PD,∴OA=OD,于是OB平分AD,点E为AD的中点,所以PE⊥AD.由此知∠PEB为面PAD与面ABCD所成二面角的平面角,∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE·sin60°=23233,即点P到平面ABCD的距离为23.(II)解法一:如图建立直角坐标系,其中O为坐标原点,x轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点GPBBP.连结AG.又知).0,233,2(),0,23,1(CA由此得到:0,0).0,0,2(),23,233,0(),43,43,1(PBBCPBGABCPBGA于是有所以的夹角BCGAPBBCPBGA,.等于所求二面角的平面角,于是,772||||cosBCGABCGA所以所求二面角的大小为772arccos.解法二:如图,取PB的中点G,PC的中点F,连结EG、AG、GF,则AG⊥PB,FG//BC,FG=21BC.∵AD⊥PB,∴BC⊥PB,FG⊥PB,∴∠AGF是所求二面角的平面角.∵AD⊥面POB,∴AD⊥EG.又∵PE=BE,∴EG⊥PB,且∠PEG=60°.在Rt△PEG中,EG=PE·cos60°=23.在Rt△PEG中,EG=21AD=1.于是tan∠GAE=AEEG=23,又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23.21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分.解:(I)由C与t相交于两个不同的点,故知方程组.1,1222yxyax有两个不同的实数解.消去y并整理得(1-a2)x2+2a2x-2a2=0.①.120.0)1(84.012242aaaaaa且解得所以双曲线的离心率).,2()2,26(226,120.11122的取值范围为即离心率且且eeeaaaaae(II)设)1,0(),,(),,(2211PyxByxA.125).1,(125)1,(,125212211xxyxyxPBPA由此得由于x1+x2都是方程①的根,且1-a2≠0,1317,06028912,,.12125.1212172222222222aaaaxaaxaax所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I)a2=a1+(-1)1=0,a3=a2+31=3.a4=a3+(-1)2=4,a5=a4+32=13,所以,a3=3,a5=13.(II)a2k+1=a2k+3k=a2k-1+(-1)k+3k,所以a2k+1-a2k-1=3k+(-1)k,同理a2k-1-a2k-3=3k-1+(-1)k-1,……a3-a1=3+(-1).所以(a2k+1-a2k-1)+(a2k-1-a2k-3)+…+(a3-a1)=(3k+3k-1+…+3)+[(-1)k+(-1)k-1+…+(-1)],由此得a2k+1-a1=23(3k-1)+21[(-1)k-1],于是a2k+1=.1)1(21231kka2k=a2k-1+(-1)k=2123k(-1)k-1-1+(-1)k=2123k(-1)k=1.{an}的通项公式为:当n为奇数时,an=;121)1(232121nn当n为偶数时,.121)1(2322nnna
本文标题:2004年高考试题全国卷1理科数学及答案(必修+选修Ⅱ河南河北山东山西安徽江西)
链接地址:https://www.777doc.com/doc-3107949 .html