您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2018年天津数学理科高考试题word版历年数学高考试题
海量资源尽在星星文库:绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。第Ⅰ卷1至2页,第Ⅱ卷3至5页。答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。祝各位考生考试顺利!第I卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。2.本卷共8小题,每小题5分,共40分。参考公式:如果事件A,B互斥,那么()()()PABPAPB.如果事件A,B相互独立,那么()()()PABPAPB.棱柱的体积公式VSh,其中S表示棱柱的底面面积,h表示棱柱的高.棱锥的体积公式13VSh,其中S表示棱锥的底面面积,h表示棱锥的高.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集为R,集合{02}Axx,{1}Bxx,则()RIABð(A){01}xx(B){01}xx(C){12}xx(D){02}xx(2)设变量x,y满足约束条件5,24,1,0,xyxyxyy则目标函数35zxy的最大值为(A)6(B)19(C)21(D)45海量资源尽在星星文库:(3)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为(A)1(B)2(C)3(D)4(4)设xR,则“11||22x”是“31x”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件(5)已知2logea,ln2b,121log3c,则a,b,c的大小关系为(A)abc(B)bac(C)cba(D)cab(6)将函数sin(2)5yx的图象向右平移10个单位长度,所得图象对应的函数(A)在区间35[,]44上单调递增(B)在区间3[,]4上单调递减海量资源尽在星星文库:(C)在区间53[,]42上单调递增(D)在区间3[,2]2上单调递减(7)已知双曲线22221(0,0)xyabab的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线同一条渐近线的距离分别为1d和2d,且126dd,则双曲线的方程为(A)221412xy(B)221124xy(C)22139xy(D)22193xy(8)如图,在平面四边形ABCD中,ABBC,ADCD,120BAD,1ABAD.若点E为边CD上的动点,则uuuruurAEBE的最小值为(A)2116(B)32(C)2516(D)3第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。2.本卷共12小题,共110分。二.填空题:本大题共6小题,每小题5分,共30分。(9)i是虚数单位,复数67i12i.(10)在51()2xx的展开式中,2x的系数为.海量资源尽在星星文库:(11)已知正方体1111ABCDABCD的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥MEFGH的体积为.(12)已知圆2220xyx的圆心为C,直线21,2232xtyt(t为参数)与该圆相交于A,B两点,则ABC△的面积为.(13)已知,abR,且360ab,则128ab的最小值为.(14)已知0a,函数222,0,()22,0.xaxaxfxxaxax若关于x的方程()fxax恰有2个互异的实数解,则a的取值范围是.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分)在ABC△中,内角A,B,C所对的边分别为a,b,c.已知sincos()6bAaB.(I)求角B的大小;学科*网(II)设a=2,c=3,求b和sin(2)AB的值.(16)(本小题满分13分)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?海量资源尽在星星文库:(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.(17)(本小题满分13分)如图,ADBC∥且AD=2BC,ADCD,EGAD∥且EG=AD,CDFG∥且CD=2FG,DGABCD平面,DA=DC=DG=2.(I)若M为CF的中点,N为EG的中点,求证:MNCDE∥平面;(II)求二面角EBCF的正弦值;学.科网(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.(18)(本小题满分13分)设{}na是等比数列,公比大于0,其前n项和为()nSnN,{}nb是等差数列.已知11a,322aa,435abb,5462abb.(I)求{}na和{}nb的通项公式;(II)设数列{}nS的前n项和为()nTnN,(i)求nT;(ii)证明221()22()(1)(2)2nnkkkkTbbnkknN.(19)(本小题满分14分)海量资源尽在星星文库:(ab0)的左焦点为F,上顶点为B.已知椭圆的离心率为53,点A的坐标为(,0)b,且62FBAB.(I)求椭圆的方程;(II)设直线l:(0)ykxk与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若52sin4AQAOQPQ(O为原点),求k的值.(20)(本小题满分14分)已知函数()xfxa,()logagxx,其中a1.(I)求函数()()lnhxfxxa的单调区间;(II)若曲线()yfx在点11(,())xfx处的切线与曲线()ygx在点22(,())xgx处的切线平行,证明122lnln()lnaxgxa;(III)证明当1eea时,存在直线l,使l是曲线()yfx的切线,也是曲线()ygx的切线.
本文标题:2018年天津数学理科高考试题word版历年数学高考试题
链接地址:https://www.777doc.com/doc-5762631 .html