您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 微带天线综述-(2)
微带天线综述摘要:近年来,随着个人通讯和移动通讯技术的迅速发展,在天线的设计上提出了小型化和宽频带的要求。而微带天线具有结构紧凑、外观优美、体积小重量轻。等优点,得到广泛的应用。但是,低增益、窄带宽的缺陷也限制了微带天线的使用。因此本文除了对微带天线做了基本介绍外,还对微带天线最基本的小型化技术、宽频带技术进行了探讨、分析和归纳。关键词:微带天线小型化宽频带一、引言随着全球通信业务的迅速发展,作为未来个人通信主要手段的无线移动通信技术己引起了人们的极大关注,在整个无线通讯系统中,天线是将射频信号转化为无线信号的关键器件,其性能的优良对无线通信工程的成败起到重要作用。快速发展的移动通信系统需要的是小型化、宽频带、多功能(多频段、多极化)、高性能的天线。微带天线作为天线家祖的重要一员,经过近几十年的发展,已经取得了可喜的进步,在移动终端中采用内置微带天线,不但可以减小天线对于人体的辐射,还可使手机的外形设计多样化,因此内置微带天线将是未来手机天线技术的发展方向之一,但其固有的窄带特性(常规微带天线约为2%左右)在很多情况下成了制约其应用的一个瓶颈,因此设计出具有宽频带小型化的微带天线不但具有一定的理论价值而且具有重要的应用价值,这也成为当前国际天线界研究的热点之一。本论文的主要工作就是提出这类天线的一些简单设计方法。二、微带天线2.1微带天线[2]的发展史及种类早在1953年G.A.DcDhamps教授就提出利用微带线的辐射来制成微带微波天线的概念。但是,在接下来的近20年里,对此只有一些零星的研究。直到1972年,由于微波集成技术的发展和空间技术对低剖面天线的迫切需求,芒森(R.E.Munson)和豪威尔(J.Q.Howell)等研究者制成了第一批实用的微带天线[1]。随之,国际上展开了对微带天线的广泛研究和应用。1979年在美国新墨西哥州大学举行了微带天线的专题目际会议,1981年IEEE天线与传播会刊在1月号上刊载了微带天线专辑。至此,微带天线已形成为天线领域中的一个专门分支,两本微带天线专辑也相继问世,至今已有近十本书。可见,70年代是微带天线取得突破性进展的时期;在80年代中,微带天线无论在理论与应用的深度上和广度上都获得了进一步的发展;今天,这一新型天线已趋于成熟,其应用正在与日俱增。微带天线是在带有导体接地板的介质基片上贴导体薄片而形成的天线。它一般利用微带线或同轴线等馈线馈电,在导体贴片与接地板之间激励起射频电磁场,并通过贴片四周与接地板间的缝隙向外辐射。因此,微带天线也可看作是一种缝隙天线。其典型结构[5,6]如图2.1所示。(a)微带贴片天线(b)微带振子天线(c)微带行波天线(d)微带缝隙天线图2.1微带天线的典型结构通常介质基片的厚度与波长相比是很小的,因而它实现了一维小型化,属于电小天线的一类。另外,随着技术的进步,现在许多手机天线都是采用曲折线型的微带天线实现了手机天线的小型化。导体贴片一般是规则形状的面积单元,如矩形、圆形或圆环形薄片等;也可以是窄长条形的薄片振子(偶极子)。由这两种单元形成的微带天线分别称为微带贴片天线和微带振子天线,如图2.1(a)、(b)所示。微带天线的另一种形式是利用微带线的某种形变(如弯曲、直角弯头等)来形成辐射,称之为微带线型天线,如图2.1(c)所示,这种天线因为沿线传输行波,又称为微带行波天线。微带天线的第四种形式是利用开在接地板上的缝隙,由介质基片另一侧的微带线或其它馈线(如带状线)对其馈电,称之为微带缝隙天线,如图2.1(d)所示。由各种微带辐射单元可构成多种多样的阵列天线,如微带贴片阵天线,微带振子阵天线,等等。2.1.1微带贴片天线微带贴片天线的最基本的结构模型便是薄的介质基片加其两侧的微带贴片和地板,其典型结构如图2.1(a)所示。它通过贴片和地板上的电流或等效为贴片四周与地板之间的缝隙上分布的等效磁流来辐射能量。2.1.2微带振子天线对于微带贴片天线,当贴片的宽度变窄时,其输入阻抗随之增加。因此当贴片的宽度接近微带馈线的宽度时,贴片天线则难于匹配使得天线的辐射特性变得很差。而微带振子天线则利用耦合馈线很好地解决了这一问题。图2-2给出了一种利用微带线来进行耦合馈电的微带振子天线,微带振子的长度约为半个波长,宽度与微带馈线的宽度相同。微带振子与其下方的微带馈线有一部分相互交叠从而耦合能量,调整此交叠部分的面积从而改变馈线与微带振子的耦合量便可以调整天线谐振时的输入阻抗。对于此微带振子天线,我们也可以将馈线变化为槽线。此外,还可以将微带振子弯折以构成微带折合振子从而减小天线的尺寸。当微带振子很窄且基片厚度远小于介质波长或微带振子的长度等于谐振长度时,我们可以假设微带振子上的电流满足余弦分布,从而得到其辐射特性。对于更一般的情况,则可以采用矩量法得出关于微带振子和地板上更准确的电流分布从而计算天线的辐射场。图2-2电磁耦合馈电的微带振子天线2.1.3微带行波天线微带线型天线是利用微带线的形变(如弯曲、拐角等),由微带线的不连续点或弯曲点来形成辐射。它们一般都端接匹配负载,沿线传输行波,故又被称为微带行波天线,其波瓣可以指向从端射到边射的任一方向。图2-3给出了几种常见的微带线型天线结构。与行波天线相对应的是微带驻波天线,其终端一般为开路或短路,波瓣一般指向边射方向。微带行波天线可等效为一种沿微带线延伸方向一边传输能量一边辐射能量的传输线段,用一个复传播常数j来表征,其中实部给出了导行波的相位信息而虚部则给出了沿线辐射所等效的衰减。图2-3给出了几种常见的微带线型天线结构[5,6]采用等效磁流法来进行近似分析。此时微带线上不连续点或弯曲点的辐射用微带线两侧的磁流来等效,且一般对于微带线型天线,其微带线的宽度w远小于波长,因此直微带线上的寄生辐射可以忽略,且不连续点或弯曲点处微带线两侧磁流的辐射可用位于中心线的单个磁流来等效。因此微带行波天线也可以视为一个串联馈电的阵列,其辐射单元便是各个不连续点或弯曲点。利用矢位法可计算出辐射场进而得到其它的天线电参数。更严格的方法可以采用数值方法,如基于积分方程的矩量法等,由天线结构建立电流积分方程,解算出电流分布便可计算出辐射场。2.1.4微带缝隙天线在2.1小节微带天线简介中,图2.1(d)示出了一种典型的微带缝隙天线结构。它是利用在微带结构的地板上刻蚀的缝隙来辐射能量。对于窄缝(缝宽比缝长小很多)结构,可以看作与微带振子天线互补。与微带贴片天线相比,其优点是交叉极化电平低。但由于缝隙本身电抗的影响,其驻波带宽一般比较窄,且是双向辐射的,不过这可以通过在介质基片的另一侧增加地板来消除背向辐射。微带缝隙天线的分析可以由等效磁流利用矢位法来计算辐射场,进而得到其它的天线电参数。现在已经出现了各种不同形式的微带缝隙天线结构,如图2-4所示。图(a)为附加了地板的微带缝隙天线,消除了背向辐射,采用带状线就可以方便地实现馈电。图(b)可以视为矩形排列的四元缝隙阵列,利用共面波导线来馈电。图(c)为微带线馈电的微带缝隙天线,其终端的开路枝节用于改善天线的匹配。图(d)是用槽线馈电的宽缝,其频带较宽但交叉极化较大。图(e)可视为共轴排列的微带缝隙天线,利用共面波导线来馈电。图(f)为微带线馈电的圆环缝隙,若缝隙改为长短轴相近的椭圆环,并合理设置馈电位置,还可以实现在边射方向上的圆极化辐射。(a)三角线(b)弯角线(c)链式线(d)城墙线图2-2几种常见的微带线型天线形式图2-4微带缝隙天线结构图2.2微带天线的馈电结构微带天线的馈电会影响到其输入阻抗进而影响天线的其它性能,因而它对微带天线的设计至关重要。微带天线的馈电方法有很多种,我们从贴片与馈线是否有金属导体接触的角度出发将其分为直接馈电和间接馈电两大类。其中直接馈电包括同轴探针馈电和微带线馈电,这两种方法因为设计简单而在实际微带天线的设计中使用最多。而间接馈电则包括电磁耦合馈电、孔径耦合馈电和共面波导传输线馈电。下面我们就分别对这几种馈电形式的结构和特点进行介绍,并在图2-5分别给出了各种馈电形式的结构图。(a)同轴馈电(b)微带线馈电(c)电磁耦合馈电(d)孔径耦合馈电(e)共面波导馈电图2-5微带天线的馈电形式2.2.1直接馈电a.同轴馈电同轴馈电也称为探针馈电,它是将同轴线的外导体与天线的地板相接,而内导体直接与贴片连接。其优点是同轴线可以根据天线输入阻抗的匹配需求而放置在贴片下面的基片中的任何位置。其缺点是需要在介质基片中钻孔以满足内导体的连接需求,同时该馈电形式需要一个向地板外面突出的连接器,这就有碍于微带天线的集成一体化设计,天线整体结构的非对称性会使得交叉极化相对较大。此外,对于基片比较厚的贴片天线,探针长度的增加会使得探针的阻抗呈现比较大的感抗,从而给天线与馈线的匹配带来困难;此外对于相对介电常数大的基片,厚度增加还可能导致表面波的激励,从而降低了天线的辐射效率。不过这可以通过一些变形的探针馈电形式加以弥补,如L探针馈电等,通过探针顶部连接的金属片对贴片进行电容耦合馈电,从而降低了探针的长度要求,改善了天线的匹配,提高了辐射效率。b.微带线馈电微带线馈电利用集成电路制造技术而将微带馈线与贴片刻蚀在一起,因而结构简单,易于制作。其缺陷是直接与贴片相连接的馈线会产生一部分辐射。随着天线工作频率的升高,当馈线尺寸变得可以与贴片尺寸相比拟时,馈线的干扰辐射将进一步加剧,由此会导致性能的恶化。2.2.2间接馈电通常为了展宽微带天线的频带会使用比较厚的介质基片,这就会给以上两种直接馈电方法带来问题。对于同轴馈电的情形,探针长度的增加会使得输入阻抗呈现出更大的感性,这将给天线的匹配带来问题。而对于微带线馈电,由于特性阻抗的制约,基片厚度的增加会导致微带线上金属导带宽度的增加,这将加剧馈线产生的干扰辐射。下面介绍的这几种间接馈电方法可以解决这些问题。a.电磁耦合馈电电磁耦合馈电形式将馈线放置在地板和贴片之间,中间分别填充两种介质。这种馈电结构消除了馈电网络的干扰辐射,又因天线介质基片的总体厚度的增加而展宽了天线的带宽。此外,还可以分别调节两种填充介质的参数以优化馈线和贴片各自的性能。其主要缺点是天线的性能对贴片和馈线的位置敏感。b.孔径耦合馈电电磁耦合馈电结构中,馈线和贴片位于地板的同一侧,而对于孔径耦合馈电,二者分居地板两侧。电磁场通过在地板上切割的电长度较小的孔径或槽从微带馈线耦合到辐射贴片上。孔径通常位于贴片的正下方,以利用结构的对称性来抑制交叉极化电平。耦合孔径的形状、尺寸和位置决定了电磁场由馈线到贴片的耦合度。槽型耦合孔径的尺寸可以是谐振的,也可以是非谐振的。对于谐振尺寸的槽型耦合孔径,它可以为天线提供另外一个谐振频率从而有效展宽了天线的频带,但是这要以增加天线的背向辐射为代价。因此非谐振尺寸的槽型耦合孔径应用比较多。这种馈电形式对于馈线和贴片位置误差的敏感度相对比较低,而且天线的带宽比较宽。与电磁耦合馈电相似,也可以分别选择两层介质基片的参数来优化各自的性能。c.共面波导线馈电共面波导线馈电的形式如图2-5(e)所示。在这种结构中,共面波导线刻蚀在天线的地板上,由同轴探针激励,终止处是一个槽。这种馈电方法的主要缺点是相当长的槽会产生比较强的辐射,从而导致天线的前后辐射比很差。其前后辐射比可以通过减小槽的尺寸和改变槽的形状来加以改善。三、微带天线的小型化及宽频带技术天线作为无线收发系统的一部分,其性能的优劣对整个系统的性能有着重要的影响。微带天线由于具有体积小、重量轻、剖面薄、易于飞行器共形、易于加工、易于有源器件和电路集成为单一模块等诸多优点,得到广泛的研究和应用。但微带天线带宽相对较窄,通常低于3%,而无线通信技术的发展,特别是高速数据传输系统以及军用宽带无线系统的发展,要求天线具有更高的带宽。同时在随着电路集成度的提高,系统对天线的体积有着更高的要求,尤其是一些军用和民用的领域,如导弹制导系统和手机等等,物理空间的限制成为系统设计必须考虑的重要因素。此外随着天线尺寸的减小,天线效率会显著降低,带宽也会随之变窄。如何在天线带宽等性能受尺寸限
本文标题:微带天线综述-(2)
链接地址:https://www.777doc.com/doc-5419192 .html